segunda-feira, 27 de maio de 2013

Características

Quando se fala em roteadores, pensamos em basicamente três usos: conexão Internet, conexão de redes locais (LAN) ou conexão de longo alcance (WAN).Relembrando como vimos anteriormente podemos definir esse equipamento como sendo um modulo processador que interliga duas ou mais redes.



Para ficar mais claro seu uso, vamos dar o exemplo do uso de roteadores na interligação entre duas redes: a Internet e a rede local de uma empresa, veja figura:



O roteador típico para esse uso deve possuir basicamente duas portas: uma porta chamada WAN e uma porta chamada LAN. A porta WAN recebe o cabo que vem do backbone da Internet. Normalmente essa conexão na porta WAN é feita através de um conector chamado V.35 que é um conector de 34 Pinos. A porta LAN é conectada à sua rede local. Essa porta também pode ser chamada Eth0 ou saída Ethernet, já que a maioria das redes locais usa essa arquitetura. Existem outros tipos de conexões com o roteador, a ligação de duas redes locais (LAN), ligação de duas redes geograficamente separadas (WAN).


O roteador acima mostrado é apenas um exemplo ilustrativo, pois normalmente os roteadores vêm com mais de uma porta WAN e com mais de uma porta LAN, sendo que essas portas têm características de desempenho muito distintas, definidas pelo modelo e marca de cada roteador.

Cada uma das portas / interfaces do roteador deve receber um endereço lógico (no caso do TCP/IP, um número IP) que esteja em uma rede diferente do endereço colocado nas outras portas. Se você rodar um traceroute através de um roteador conhecido, verá que dois endereços IP aparecem para ele. Um refere-se à sua interface WAN e outro à sua interface LAN.


Na hora de se escolher um roteador ou desenhar um esquema de rede com roteadores, deve-se levar em consideração algumas características básicas encontradas nos roteadores:




Número de portas WAN

Número de portas LAN

Velocidade das portas WAN
Velocidade das portas LAN
Redundância
Tolerância a falhas Balanceamento de carga
Alguns roteadores possuem um recurso chamado redundância de call-up. Esse recurso permite ligar o roteador a um modem através de um cabo serial e, caso o link WAN principal falhar, o modem disca para um provedor e se conecta mantendo a conexão da rede local com a Internet no ar.

Alguns roteadores trazem a solução para esse problema através de recursos de redundância e tolerância à falhas. Através desse recurso, o roteador continua operando mesmo quando ele se danifica. Para entender isso, basta imaginar um roteador que possua, na realidade, dois dentro roteadores dentro dele. Caso o primeiro falhe, o segundo entra em ação imediatamente. Isso permite que a rede não saia do ar no caso de uma falha em um roteador.


Existem ainda roteadores capazes de gerenciar duas ou mais conexões entre ele e outro roteador, permitindo dividir o tráfego entre esses links, otimizando as conexões. Essa característica, chamada balanceamento de carga, é utilizada, por exemplo, em conexões ter filiais de empresas.

Tipos de Protocolos

IGP (interior gateway protocol) - Estes são utilizados para realizar o roteamento dentro de um Sistema Autônomo. Existem vários protocolos IGP, vejamos alguns:





RIP (Routing Information Protocol)
IGRP (Interior Gateway Routing Protocol) 
Enhanced IGRP 
OSPF (Open Shortest Path First) 
IS-IS (Intermediate System-to-Intermediate System)

EGP (exterior gateway protocol) - Estes são utilizados para realizar o roteamento entre Sistemas Autônomos diferentes. É dividido em:



EGP (Exterior Gateway Protocol) - protocolo tem o mesmo nome que o seu tipo. 


BGP (Border Gateway Protocol)

Protocolos de roteamento

Todos os protocolos de roteamento realizam as mesmas funções básicas. Eles determinam a rota preferida para cada destino e distribuem informações de roteamento entre os sistemas da rede. Como eles realizam estas funções, em particular eles decide qual é a melhor rota, é a principal diferença entre os protocolos de roteamento.

Roteamento estático e roteamento dinâmico

A configuração de roteamento de uma rede específica nem sempre necessita de protocolos de roteamento. Existem situações onde as informações de roteamento não sofrem alterações, por exemplo, quando só existe uma rota possível, o administrador do sistema normalmente monta uma tabela de roteamento estática manualmente. Algumas redes não têm acesso a qualquer outra rede e, portanto não necessitam de tabela de roteamento. Dessa forma, as configurações de roteamento mais comuns são:
Roteamento estático: uma rede com um número limitado de roteadores para outras redes pode ser configurada com roteamento estático. Uma tabela de roteamento estático é construída manualmente pelo administrador do sistema, e pode ou não ser divulgada para outros dispositivos de roteamento na rede. Tabelas estáticas não se ajustam automaticamente a alterações na rede, portanto devem ser utilizadas somente onde as rotas não sofrem alterações. Algumas vantagens do roteamento estático são a segurança obtida pela não divulgação de rotas que devem permanecer escondidas; e a redução do overhead introduzido pela troca de mensagens de roteamento na rede.



Roteamento dinâmico: redes com mais de uma rota possível para o mesmo ponto devem utilizar roteamento dinâmico. Uma tabela de roteamento dinâmico é construída a partir de informações trocadas entre protocolos de roteamento. Os protocolos são desenvolvidos para distribuir informações que ajustam rotas dinamicamente para refletir alterações nas condições da rede. Protocolos de roteamento podem resolver situações complexas de roteamento mais rápida e eficientemente que o administrador do sistema. Protocolos de roteamento são desenvolvidos para trocar para uma rota alternativa quando a rota primária se torna inoperável e para decidir qual é a rota preferida para um destino. Em redes onde existem várias alternativas de rotas para um destino devem ser utilizados protocolos de roteamento.

Protocolos

Os roteadores possuem uma tabela interna que lista as redes que eles conhecem, chamada tabela de roteamento. Essa tabela possui ainda uma entrada informando o que fazer quando chegar um datagrama com endereço desconhecido. Essa entrada é conhecida como rota default ou default gateway.



Assim, ao receber um datagrama destinado a uma rede que ele conhece, o roteador envia esse datagrama a essa rede, através do caminho conhecido. Caso ele receba um datagrama destinado a uma rede cujo caminho ele não conhece, esse datagrama é enviado para o roteador listado como sendo o default gateway. Esse roteador irá encaminhar o datagrama usando o mesmo processo. Caso ele conheça a rede de destino, ele enviará o datagrama diretamente a ela. Caso não conheça, enviará ao roteador listado como seu default gateway. Esse processo continua até o datagrama atingir a sua rede de destino ou o tempo de vida do datagrama ter se excedido o que indica que o datagrama se perdeu no meio do caminho.

As informações de rotas para a propagação de pacotes podem ser configuradas de forma estática pelo administrador da rede ou serem coletadas através de processos dinâmicos executando na rede, chamados protocolos de roteamento. Note-se que roteamento é o ato de passar adiante pacotes baseando-se em informações da tabela de roteamento. Protocolos de roteamento são protocolos que trocam informações utilizadas para construir tabelas de roteamento.

É importante distinguir a diferença entre protocolos de roteamento (routing protocols) e protocolos roteados (routed protocols). Protocolo roteado é aquele que fornece informação adequada em seu endereçamento de rede para que seus pacotes sejam roteados, como o TCP/IP e o IPX. Um protocolo de roteamento possui mecanismos para o compartilhamento de informações de rotas entre os dispositivos de roteamento de uma rede, permitindo o roteamento dos pacotes de um protocolo roteado. Note-se que um protocolo de roteamento usa um protocolo roteado para trocar informações entre dispositivos roteadores. Exemplos de protocolos de roteamento são o RIP (com implementações para TCP/IP e IPX) e o EGRP.

Roteadores

Roteadores são pontes que operam na camada de Rede do modelo OSI (camada três), essa camada é produzida não pelos componentes físicos da rede (Endereço MAC das placas de rede, que são valores físicos e fixos), mais sim pelo protocolo mais usado hoje em dia, o TCP/IP, o protocolo IP é o responsável por criar o conteúdo dessa camada.
Isso Significa que os roteadores não analisam os quadros físicos que estão sendo transmitidos, mas sim os datagramas produzidos pelo protocolo que no caso é o TCP/IP, os roteadores são capazes de ler e analisar os datagramas IP contidos nos quadros transmitidos pela rede.
O papel fundamental do roteador é poder escolher um caminho para o datagrama chegar até seu destino. Em redes grandes pode haver mais de um caminho, e o roteador é o elemento responsável por tomar a decisão de qual caminho percorrer. Em outras palavras, o roteador é um dispositivo responsável por interligar redes diferentes, inclusive podendo interligar redes que possuam arquiteturas diferentes (por exemplo, conectar uma rede Token Ring a uma rede Ethernet, uma rede Ethernet a uma rede x-25

Na figura seguinte é mostrado um exemplo de uso de roteadores. Como você pode perceber, há dois caminhos para o micro da “rede 1” mandar dados para o micro da “rede 6”, através da “rede 2” ou através da “rede 4”.  



Os roteadores podem decidir qual caminho tomar através de dois critérios: o caminho mais curto (que seria através da “rede 4”) ou o caminho mais descongestionado (que não podemos determinar nesse exemplo; se o caminho do roteador da “rede 4” estiver congestionado, o caminho do roteador da “rede 2”, apesar de mais longo, pode acabar sendo mais rápido).

A grande diferença entre uma ponte e um roteador é que o endereçamento que a ponte utiliza é o endereçamento usado na camada de Link de Dados do modelo OSI, ou seja, o endereçamento MAC das placas de rede, que é um endereçamento físico. O roteador, por operar na camada de Rede, usa o sistema de endereçamento dessa camada, que é um endereçamento lógico. No caso do TCP/IP esse endereçamento é o endereço IP.

Em redes grandes, a Internet é o melhor exemplo, é praticamente impossível para uma ponte saber os endereços MAC de todas as placas de rede existentes na rede. Quando uma ponte não sabe um endereço MAC, ela envia o pacote de dados para todas as suas portas. Agora imagine se na Internet cada roteador enviasse para todas as suas portas dados toda vez que ele não soubesse um endereço MAC, a Internet simplesmente não funcionaria, por caso do excesso de dados.


Devido a isso, os roteadores operam com os endereços lógicos, que trabalham em uma estrutura onde o endereço físico não é importante e a conversão do endereço lógico (Endereço IP) para o endereço físico (endereço MAC) é feita somente quando o data grama chega à rede de destino.

A vantagem do uso de endereços lógicos em redes grandes é que eles são mais fáceis de serem organizados hierarquicamente, isto é, de uma forma padronizada. Mesmo que um roteador não saiba onde esta fisicamente localizada uma máquina que possua um determinado endereço, ele envia o pacote de dados para um outro roteador que tenha probabilidade de saber onde esse pacote deve ser entregue (roteador hierarquicamente superior). Esse processo continua até o pacote atingir a rede de destino, onde o pacote atingira a máquina de destino. Outra vantagem é que no caso da troca do endereço físico de uma máquina em uma rede, a troca da placa de rede defeituosa não fará com que o endereço lógico dessa máquina seja alterado.

É importante notar, que o papel do roteador é interligar redes diferentes (redes independentes), enquanto que papel dos repetidores, hub, pontes e switches são de interligar segmentos pertencentes a uma mesma rede.

Switches

O switch é um hub que, em vez de ser um repetidor é uma ponte. Com isso, em vez dele replicar os dados recebidos para todas as suas portas, ele envia os dados somente para o micro que requisitou os dados através da análise da Camada de link de dados onde possui o endereço MAC da placa de rede do micro, dando a idéia assim de que o switch é um hub Inteligente, além do fato dos switches trazerem micros processadores internos, que garantem ao aparelho um poder de processamento capaz de traçar os melhores caminhos para o trafego dos dados, evitando a colisão dos pacotes e ainda conseguindo tornar a rede mais confiável e estável. 

De maneira geral a função do switch é muito parecida com a de um bridge, com a exceção que um switch tem mais portas e um melhor desempenho, já que manterá o cabeamento da rede livre. Outra vantagem é que mais de uma comunicação pode ser estabelecida simultaneamente, desde que as comunicações não envolvam portas de origem ou destino que já estejam sendo usadas em outras comunicações.

Existem duas arquiteturas básicas de Switches de rede: "cut-through" e "store-and-forward":




Cut-through: apenas examina o endereço de destino antes de reencaminhar o pacote.


Store-and-forward: aceita e analisa o pacote inteiro antes de o reencaminhar. Este método permite detectar alguns erros, evitando a sua propagação pela rede.


Hoje em dia, existem diversos tipos de Switches híbridos que misturam ambas as arquiteturas.